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Background & Ideas

Context

* Autonomous vehicles must robustly predict other
agents’ trajectories under distribution shifts and
avoid relying on spurious correlations.

« State-of-the-art models suffer large performance
drops if non-causal agents are removed.

 We have causal agent labels annotated by humans.

Key Challenge
 How to identify and attend only to truly causal
agents?

Our Goal

* |Improve robustness and generalization by
iIntegrating explicit causal structure into prediction
model’s attention layers.
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Contributions

1. CRITIC: an agent-centric causal trajectory predictor.

2. Causal Discovery Network (CDN): learns a sparse
inter-agent causal graph via an information-bottleneck
regularization + self-supervised denoising
autoencoder.

3. Causal Attention Gating (CAG): injects the learned
graph into the Transformer’s attention, suppressing
non-causal inputs.

4. Empirical Gains: up to 54 % robustness improvement
under RemoveNonCausal perturbation and 29 %

cross-domain gains.
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Scenario ID: 4f25d1ad8f2a2dbb

The AV is shown In green. The orange borderline
indicates the causal agents. The ground truth, and
predictions are shown in orange, and purple colors.
Star shows the predicted most confident mode. The
color saturation indicates the estimated probability of
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Causal Discovery Network receives the agent representations and generates a causality adjacency matrix. The
matrix is used by a Transformer-based prediction backbone to shape the attention toward the causal agents.

Model Overview

1-Inputs:

 Agent Encoder: encodes each agent + map into
disentangled embeddings.

2-Causal Discovery Network:

« MPNN produces soft adjacency A via a BinConcrete
relaxation.

« Sparsity loss (KL to Bernoulli(p)) enforces an
iInformation bottleneck.

« Auxiliary GCN denoising autoencoder to further assist
causal discovery network'’s training

3-Transformer-based Prediction Backbone

- Causal Attention Gating (CAG) to apply the
discovered causal adjacency matrix in the attention
layers of the backbone network

Robusthess to Non-causal

Agent Removal

« Causal robustness: The Prediction accuracy
change caused by removing non-causal agents
(AmIinADE / minADE (%) )

« Here we show that our model at sparsity value of 4%
outperforms the baselines significantly from the
perspective of causal robustness.

« Sparsity Iis defined based on the number
connections in the discovered causal relation graph
from the perspective of autonomous vehicle.

Model AminADE / minADE (%) {

MultiPath++ 37.5%
SceneTransformer 26.8 %
Wayformer 25.7 %
MTR 21.5%
CRIiTIC_SP4 (Ours) 9.9 %
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Sparsity

« The relation between the sparsity of the identified
causal graph, the precision and recall values for the
causal agent identification, and the causal robustness
measure.

Causal Attention Gating

and Information Bottleneck

We apply a learned soft adjacency A to the standard self-

attention weights and drown non-causal links in noise.

Let & = softmax( QK )

Vdyg,
then
CausalAttn(Q, K,V;A) = (20 A)V+a(®Pe (11— A)N(0,I)
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where the second term is a noise term .
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Conclusion

Takeaways

« Explicit causal structure leads to dramatically
Improved robustness and cross-domain
performance.

« (Causal gating imposes an effective information
bottleneck.

Next Steps

* Incorporate agent—map causal edges (e.qg., traffic
lights).

 Model unobserved confounders.
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 We argue that causal robustness should be reported I
along with the sparsity values.

an agent being causal.
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